Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Am Soc Nephrol ; 31(9): 2225-2226, 2020 09.
Article in English | MEDLINE | ID: covidwho-1383790
2.
Commun Med (Lond) ; 1: 24, 2021.
Article in English | MEDLINE | ID: covidwho-1860411

ABSTRACT

Background: SARS-CoV-2 is a highly contagious virus that causes the disease COVID-19. We have recently reported that androgens regulate the expression of SARS-CoV-2 host entry factors ACE2 and TMPRSS2, and androgen receptor (AR) in lung epithelial cells. We also demonstrated that the transcriptional repression of the AR enhanceosome inhibited SARS-CoV-2 infection in vitro. Methods: To better understand the various sites of SARS-CoV-2 infection, and presence of host entry factors, we extensively characterized the tissue distribution and localization of SARS-CoV-2 virus, viral replication, and host entry factors in various anatomical sites sampled via autopsy. We applied RNA in-situ-hybridization (RNA-ISH), immunohistochemistry (IHC) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) approaches. We also assessed histopathological changes in SARS-CoV-2 infected tissues. Results: We detect SARS-CoV-2 virus and viral replication in pulmonary tissues by RNA-ISH and IHC and a variety of non-pulmonary tissues including kidney, heart, liver, spleen, thyroid, lymph node, prostate, uterus, and colon by qRT-PCR. We observe heterogeneity in viral load and viral cytopathic effects among various organ systems, between individuals and within the same patient. In a patient with a history of kidney transplant and under immunosuppressant therapy, we observe an unusually high viral load in lung tissue by RNA-ISH, IHC and qRT-PCR. SARS-CoV-2 virus is also detected in this patent's kidney, liver and uterus. We find ACE2, TMPRSS2 and AR expression to overlap with the infection sites. Conclusions: This study portrays the impact of dispersed SARS-CoV-2 infection in diverse organ systems, thereby facilitating avenues for systematic therapeutic approaches.

3.
Histopathology ; 77(4): 570-578, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1005886

ABSTRACT

AIMS: Diffuse alveolar damage (DAD) is a ubiquitous finding in inpatient coronavirus disease 2019 (COVID-19)-related deaths, but recent reports have also described additional atypical findings, including vascular changes. An aim of this study was to assess lung autopsy findings in COVID-19 inpatients, and in untreated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive individuals who died in the community, in order to understand the relative impact of medical intervention on lung histology. Additionally, we aimed to investigate whether COVID-19 represents a unique histological variant of DAD by comparing the pathological findings with those of uninfected control patients. METHODS AND RESULTS: Lung sections from autopsy cases were reviewed by three pulmonary pathologists, including two who were blinded to patient cohort. The cohorts included four COVID-19 inpatients, four cases with postmortem SARS-CoV-2 diagnoses who died in the community, and eight SARS-CoV-2-negative control cases. DAD was present in all but one SARS-CoV-2-positive patient, who was asymptomatic and died in the community. Although SARS-CoV-2-positive patients were noted to have more focal perivascular inflammation/endothelialitis than control patients, there were no significant differences in the presence of hyaline membranes, fibrin thrombi, airspace organisation, and 'acute fibrinous and organising pneumonia'-like intra-alveolar fibrin deposition between the cohorts. Fibrinoid vessel wall necrosis, haemorrhage and capillaritis were not features of COVID-19-related DAD. CONCLUSIONS: DAD is the primary histological manifestation of severe lung disease in COVID-19 patients who die both in hospital and in the community, suggesting no contribution of hyperoxaemic mechanical ventilation to the histological changes. There are no distinctive morphological features with which to confidently differentiate COVID-19-related DAD from DAD due to other causes.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Adult , Aged , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Autopsy , COVID-19 , Cohort Studies , Coronavirus Infections/virology , Female , Humans , Lung/pathology , Lung/virology , Male , Middle Aged , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Surveys and Questionnaires
4.
J Am Soc Nephrol ; 31(8): 1683-1687, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-186288

ABSTRACT

BACKGROUND: A significant fraction of patients with coronavirus disease 2019 (COVID-19) display abnormalities in renal function. Retrospective studies of patients hospitalized with COVID-19 in Wuhan, China, report an incidence of 3%-7% progressing to ARF, a marker of poor prognosis. The cause of the renal failure in COVID-19 is unknown, but one hypothesized mechanism is direct renal infection by the causative virus, SARS-CoV-2. METHODS: We performed an autopsy on a single patient who died of COVID-19 after open repair of an aortic dissection, complicated by hypoxic respiratory failure and oliguric renal failure. We used light and electron microscopy to examine renal tissue for evidence of SARS-CoV-2 within renal cells. RESULTS: Light microscopy of proximal tubules showed geographic isometric vacuolization, corresponding to a focus of tubules with abundant intracellular viral arrays. Individual viruses averaged 76 µm in diameter and had an envelope studded with crown-like, electron-dense spikes. Vacuoles contained double-membrane vesicles suggestive of partially assembled virus. CONCLUSIONS: The presence of viral particles in the renal tubular epithelium that were morphologically identical to SARS-CoV-2, and with viral arrays and other features of virus assembly, provide evidence of a productive direct infection of the kidney by SARS-CoV-2. This finding offers confirmatory evidence that direct renal infection occurs in the setting of AKI in COVID-19. However, the frequency and clinical significance of direct infection in COVID-19 is unclear. Tubular isometric vacuolization observed with light microscopy, which correlates with double-membrane vesicles containing vacuoles observed with electronic microscopy, may be a useful histologic marker for active SARS-CoV-2 infection in kidney biopsy or autopsy specimens.


Subject(s)
Acute Kidney Injury/complications , Coronavirus Infections/complications , Kidney Tubules/virology , Pneumonia, Viral/complications , Acute Kidney Injury/mortality , Aortic Dissection/surgery , Autopsy , Betacoronavirus , COVID-19 , Coronavirus Infections/mortality , Epithelial Cells/pathology , Humans , Kidney Tubules/pathology , Kidney Tubules/ultrastructure , Male , Middle Aged , Nephritis/physiopathology , Pandemics , Pneumonia, Viral/mortality , Prognosis , Respiratory Insufficiency , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL